The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages.

نویسندگان

  • Takao Koeduka
  • Gordon V Louie
  • Irina Orlova
  • Christine M Kish
  • Mwafaq Ibdah
  • Curtis G Wilkerson
  • Marianne E Bowman
  • Thomas J Baiga
  • Joseph P Noel
  • Natalia Dudareva
  • Eran Pichersky
چکیده

Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain.

The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the tr...

متن کامل

Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.

Flowers of Clarkia breweri, an annual plant from the coastal range of California, emit a strong sweet scent of which S-linalool, an acyclic monoterpene, is a major component. Chromosomal, chemical, and morphological data, and the species' geographic distribution, suggest that C. breweri evolved from an extant nonscented species, C. concinna. A cDNA of Lis, the gene encoding S-linalool synthase,...

متن کامل

Acetyl-CoA:benzylalcohol acetyltransferase--an enzyme involved in floral scent production in Clarkia breweri.

Volatile esters impart distinct characteristics to the floral scent of many plants, and are important in attracting insect pollinators. They are also important flavor compounds in fruits. The ester benzylacetate is a major constituent of the floral scent of Clarkia breweri, an annual plant native to California. The enzyme acetyl-CoA:benzylalcohol acetyltransferase (BEAT), which catalyzes the fo...

متن کامل

Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases.

The precursor of all monoterpenes is the C10 acyclic intermediate geranyl diphosphate (GPP), which is formed from the C5 compounds isopentenyl diphosphate and dimethylallyl diphosphate by GPP synthase (GPPS). We have discovered that Antirrhinum majus (snapdragon) and Clarkia breweri, two species whose floral scent is rich in monoterpenes, both possess a heterodimeric GPPS like that previously r...

متن کامل

Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family.

Some basil varieties are able to convert the phenylpropenes chavicol and eugenol to methylchavicol and methyleugenol, respectively. Chavicol O-methyltransferase (CVOMT) and eugenol O-methyltransferase (EOMT) cDNAs were isolated from the sweet basil variety EMX-1 using a biochemical genomics approach. These cDNAs encode proteins that are 90% identical to each other and very similar to several is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2008